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Abstract 

Intelligent image databases have to facilitate analyses of space and aerial observations of 
the environment processes and phenomena for estimation the environment current state. 
Such image databases should efficiently combine the experts' image interpretations and 
the corresponding environment knowledge. The paper demonstrates a new application of 
computer vision to image databases - the use of image texture for annotation, the 
description of content. The goal was to use a scheme that is able to automatically decide 
on the image features and based upon psychophysical studies of human perception nature 
and computer vision models in contrast to multiple cue-based schemes being still 
heuristic. The approach provides a learning algorithm for selecting the most 
representative features of the homogeneous and piecewise-homogeneous data. Highly 
specializes and context-dependent features are extracted automatically and spatial 
information is preserved. 

1. Introduction 

Environmental degradation is an inseparable part of our civilization’s development. 
Although people are more aware of what causes the degradation and take preventive 
steps, the consequences of degradation are becoming more and more visible. 
Efficient environmental policies are obstructed due to scarcity of complete and 
confident area information, drawbacks of conventional field data acquisition and 
insufficient environmental information management in the absence of powerful 
digital systems. 

The good prospects for joint application of space and aerial images for studying 
and observing environmental processes were found at the very beginning of the 
space age. Such imagery permits us to cover environmental processes on larger 
territories and explore their development. Nevertheless, the collected images were 
not widely used in practice because those taken from space were underestimated by 
professionals. This was also due in part to the absence of systematic image 
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databases that allow us to investigate particular environmental disasters and to learn 
how to recognize one or another environmental process on land surfaces. 

At present, ecologists are deterred by their minimum contribution to the 
development of means and technologies for acquiring and applying remotely sensed 
data to environmental problems. Space images are mostly collected without regard 
for the requirements of this end user group. Since remote sensing is being left in the 
hands of technocrats, it has frequently no chance of being the powerful practical 
ecological tool it could be given its abilities to provide for the permanent imaging of 
the Earth's surface on a day-by-day basis. In spite of these abilities, the potential for  
environmental degradation assessment by means of remote sensing has not yet been 
realized. 

There is a need to involve environmental experts in space planning and 
underlying aerial observations to investigate particular environmental processes, as 
well as in analysis and systematical collection of relevant images. This will facilitate 
the use of these results in practice for detecting and assessing environmental 
degradation. 

2. Main Issues 

Intelligent image databases (IDBs) have to facilitate thorough analyses of space and 
aerial observations of the environment processes and phenomena for evaluation of 
the current state of the environment. Such image databases should efficiently 
combine the experts' image interpretations and the corresponding environmental 
knowledge. An environmental knowledge-based approach to building an intelligent 
IDB suggests that the IDB should be created on the basis of a special image model 
to be able to describe, generate, store and retrieve specific samples of environmental 
degradation by their visual and semantic contents. 

Experiments have shown that it is very difficult to characterize complex 
environmental objects by their images, so that often it is done through qualitative 
and descriptive terms, the nomenclature being verbal and non-unique. For example, 
fuzzy adjectives like "hilly", "rough", and "flat" are used to describe typical 
landforms, and terms like "fine", "coarse", "close", "loose", "plain" and "twilled" 
distinguish between different image patterns of the landscape (Gimel'farb and 
Kovalevskaya 1995; Kovalevskaya 1998). Although the qualitative terms are a 
useful tool for human descriptive interpretation, they involve inherent subjectivity 
and fuzziness. This is true for any visible object of natural origin, for example 
patterns of snow cover pollution. It should be noted that, by and large, various 
groups of experts come to different and, sometimes, contradictory conclusions based 
on the same environmental image patterns. Thus, it is very important to distinguish 
such ambiguous environmental patterns in images. 
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Conversion of various qualitative attributes and descriptions of particular 
environmental patterns to measurable, quantitative properties offers a wide and open 
research field and is highly significant for assessing environmental degradation. In 
general, it boils down to the problem of spatial (visual) knowledge discovery and 
modeling. 

Actually, while IDBs are rather popular, spatial knowledge modeling still faces 
many problems and challenges. The multiple cue-based schemes generally are still 
heuristic and not based upon psychophysical studies of the nature of human 
perception and computer vision models. 

It is noticeable that the most enlightening and insightful research into visual 
knowledge has tended to consider the ideas of one field with reference to another. 
One can benefit by taking cues from the inferred representations, dynamics and 
architecture of the human visual systems. Perception might be defined as the 
extraction of "meaning" from a (visual) stimulus. The goal of a visual knowledge 
discovery system is to process such stimuli and extract a more meaningful and 
concise representation. The system must analyze the relationships among elements 
of an image in order to infer some higher-level abstracted representation.  

The problems of visual knowledge modeling in IDB fall into three broad areas: 
retrieval, segmentation and recognition/classification. Much of the past research in 
these fields has concentrated on the cue extraction stage. The success of the problem 
solution is heavily dependent upon the choice of cues upon which human perception 
is based. Most natural surfaces exhibit texture that appears to be a vital cue for 
visual knowledge discovery systems. Scenes containing pictures of wood, grass, etc. 
can be easily classified based on texture rather than shape or color. But a concise 
definition of texture has eluded past research. 

In 1970, an early researcher (Muerle 1970) noted that a "definition of texture 
does not exist". In the same year, Hawkins (1970) expressed similar sentiments in 
observing how difficult it is to define "the very concept of texture", especially given 
the obvious "psychological fact that human beings perceive and recognize textures". 
Since then numerous different texture definitions have been attempted in the 
literature, demonstrating the difficulty in defining texture is to measure it 
(Gimel'farb 1996). 

As computing technology appeared to be widely available, researchers began to 
apply a wide variety of numerical algorithms to describe textural images. In general 
these algorithms relied upon computing a set of features which could be used to 
classify a texture by measuring the similarity of its features to that of another. And 
again the major difficulty lies in the choice of features used to describe textures. If 
some knowledge is available about the input patterns then the features can be 
optimally selected to maximize the likelihood of correct matching. Thus, the most 
important issues of visual knowledge discovery and modeling are the following: 
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• A model should be based on the study of a common standard, this being the 
nature of human perception. 

• A model should be flexible and be able to extract a concise representation of the 
immense amount of information. 

• A model should be able to automatically decide on the features for knowledge 
discovery purposes. 

From this point of view generative representations appear to be very attractive due 
to their ability to generate images by a special technique and check the expressibility 
of the representation directly by comparing the generated images with the learning 
ones visually and quantitatively. 

Julesz & Bergen (1983) review research over the previous 20 years, 
acknowledging that it has taken this length of time to discover that texture 
perception depends on local second-order features alone and that global higher-
order statistical parameters can be ignored. Research with texture pairs having 
identical second-order statistics has revealed that the texture discrimination system 
cannot globally process third- and higher-order statistics, and that discrimination is 
the result of a few local conspicuous features. It appears that only the second-order 
statistics have perceptual significance, and the relative phase between pairs of pixels 
cannot be perceived without detailed scrutiny by local attention. 

For a human expert, the visual environmental features of an image relate mostly 
to specific spatially homogeneous or piecewise-homogeneous textures created by 
"weaving" specific primitive elements, or micro-patterns (Gimel'farb and 
Kovalevskaya 1998). Experiments in modeling and segmenting image textures 
confirmed high potential for exploiting new probabilistic models of Gibbs random 
fields and related stochastic optimization techniques as effective interactive tools for 
developing the quantitative visual features of the environmental patterns 
(Kovalevskaya and Gimel'farb 1998; Kovalevskaya 1999). The models are 
generative ones and take into account only first-order and second-order statistics or 
multiple pairwise interactions between the gray levels in the pixels. An effective 
learning scheme is used to automatically decide on the conspicuous texture features, 
namely to recover a structure and strength of the interactions using maximum 
likelihood estimates. 

3. Models with Multiple Pairwise Interactions 

Visual patterns can be specified as (i) grayscale or color visual patterns of natural 
surfaces and (ii) simulated patterns, which approach, within certain limits, these 
natural patterns.  

The visual pattern elements are called textons in Julesz 1981. In a finite lattice, 
each texton is supported by a specific spatial combination of the pixels. Gray levels 
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in these pixels represent the texton so that a particular support produces a set of 
possible textons. 

Let two grayscale images represent the same translation-invariant visual pattern if 
they have the same or, at least, closely similar marginal probability distributions of 
gray levels in the pixels and of gray level co-occurrences in the pixel pairs that 
belong to a particular characteristic subset of the families of translation-invariant 
pixel-pairs. 

Then the self-similarity can be quantitatively measured by using one or another 
statistical goodness-of-fit test for the sample relative frequency distributions of gray 
levels and of particular gray level co-occurrences in the images. Gibbs random 
fields as image models directly exploit this scheme (Gimel'farb and Kovalevskaya 
1998; Kovalevskaya 1999).  

Probabilistic visual pattern representation is based on the assumption that each 
digital image is a sample of a particular random field and can be matched in 
experiments with a particular probability. An image representation relates the image 
signals (e.g. gray levels) to the probability. Also if the representation is generative 
then various visual image samples can be simulated in such a way that their sample 
relative frequencies tend to the probabilities specified by the model. 

Let any random field X with the components X (i) taking values x (i) from the 
same finite signal set Q be considered as a probabilistic model of patterns. But to be 
of practical use the model should provide high probabilities of the desired patterns 
and zeroth or almost zeroth probabilities of other patterns. Usually the desired 
images to be modeled constitute only a tiny part of all the possible patterns. 

The research considered the following three types of grayscale patterns: spatially 
homogeneous patterns, region maps and piecewise-homogeneous patterns. The 
patterns and region maps differs only by the physical meaning of the gray levels 
x (i) in the pixels. 

In the general case the Markov/Gibbs model is introduced as follows (Besag, 
1974). Let X = (X(i): i∈ R) be a 2-D lattice Markov random field (MRF) with 
samples x = (x(i): i∈ R;  q = x(i)∈ Q), where R is the finite 2-D lattice 
R = ((m,n): m=0,…,M-1; n=0,…,N-1) of the size ⏐R⏐= M*N, and Q= {0,1,…, qmax} 
is a finite set of the signal values, or gray levels q in lattice sites, or pixels (m,n). 

The theorem of Hammersley and Clifford (Geman and Geman 1984) states that 
the joint probability distribution P (X=x) of the MRF over the samples space 
SS = (x: x (i)∈ Q; i∈ R) of all possible realizations of the field under the positivity 
condition (that all sample realizations x∈ SS have non-zero probability P (x)>0) can 
be represented in the factorized form: 
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where V...(...) denotes potentials, or non-constant functions of the variables x (i) 
such that their supports κ are cliques, or complete subgraphs in the neighborhood 
graph. The potentials describe quantitatively the strength of the signal interaction 
over each clique. The term Z is the normalizing constant: 
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It should be particularly emphasized that an interaction between the pixels, or 
equivalently, between gray levels in the pixels, has no physical meaning. It reflects 
only the fact that some spatial combinations in a particular pattern are more frequent 
than others: the less uniform the probability distribution of combinations in the 
pixels that have a particular spatial arrangement, the stronger the interaction 
between pixels. 

Pattern homogeneity is quantitatively defined in this research in terms of 
conditional probability distributions of spatial combinations. Mostly the 
distributions are assumed to be translation invariant, that is, in different parts of a 
homogeneous pattern that can be superimposed by translation, the sample relative 
frequencies of gray level combinations are expected to be almost the same. 

For describing spatially homogeneous and piecewise-homogeneous patterns the 
interaction structure seems to be more important then the potentials. So traditional 
automodels cannot reflect in full measure the characteristic features of visual 
patterns mainly because of the pre-defined interaction structure. But, they are widely 
used in practice due to a common opinion that they are no practicable alternatives. 

Contrary to this opinion, it is an easy matter to generalize the Gibbs models so as 
to involve an arbitrary structure of multiple translation invariant pairwise pixel 
interactions. In a generalized model each pixel appears in several characteristic 
second-order cliques, and the interaction structure is formed by uniting the 
corresponding second-order clique families Kα . 

U
A
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∈
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α

α

Each second-order clique family Kα ≡ Kµανα = [(i,j): i,j ∈ R; i-j = (µα ,να)] contains 
all the translation invariant pixel pairs (i,j) that have a fixed interpixel, or intra-
clique shift (µα ,να); if  i = (m,n)   then   j=(m -µα ,n -να). 

There are many natural and artificial patterns that can be modeled adequately by 
proposed Gibbs models with multiple pairwise interactions (Kovalevskaya 1999). 

This specific class of spatially homogeneous and piecewise homogeneous image 
visual patterns is called stochastic pattern (Gimel'farb 1996). A stochastic pattern 
has pixels and pixel pairs as supported for (primitive) textons and is completely 
specified by the structure and strengths of the translation invariant pairwise pixel 
interactions 
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A model-based interaction map shows relative contributions of each clique 
family to the total energy and can be displayed, for a visual analysis, in a grayscale 
or color form. Examples of the interaction maps for the natural pattern are displayed 
in Figure 1. 
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Figure 1: Model-based interaction map to recover most characteristic structure of 
the pairwise pixel interactions: natural samples and visual forms of interaction maps.  

Supervised segmentation is considered as a simulation of a desired region map using 
a conditional Gibbs model of region maps corresponding to a piecewise-
homogeneous grayscale pattern (Figure 2), and the same controllable simulated 
annealing technique can be used to segment a piecewise-homogeneous image. 
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(b)

(d) 

 

(a) 

Figure 2: Segmentation of the four-region collage of visual patterns: (a) the training 
collage and its region map, (b) the test collage an ideal region map,(c) segmentation 

maps (8th and 61st iterations). 

 

Copyright 2000 Metropolis Verlag, Marburg, ISBN: 3-89518-307-5



 579

Different fragments of the natural image are used to analyze to what extent our 
model reflects the self-similarity within the patterns (Figure 3). The experiments 
show that some of the visual patterns really belong to the class of stochastic 
patterns. In these cases, the natural and simulated patterns possess both a good 
visual resemblance and high proximity between characteristic families. Although in 
some cases such proximity does not ensure the visual similarity.  

 

(a)       (b) 

(c)       (d) 

 

 

Figure 3: Left image: Terrace valley of Katun' River (Altay mountains, aerial survey).  
Right images: Different types of erosion terraces: 

(a, c) - training patterns, (b, d) - generated patterns. 

These results are applied to investigate structural and functional features of 
ecosystems. The main attention is focused on:  
• the dynamics of land cover, landscape changes, degradation and recultivation 

processes; 
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• snow cover pollution due to concentrated industries or single-branch economies 
in cities; 

• infrastructure changes and urbanization; 
• National Nature Reserves. 
The knowledge-based environmental interpretation of space and aerial images is 
still more an art than a formal theory. It is mostly descriptive, uses fuzzy terms and 
is not systematically equated with the measurable attributes. So the next step should 
be to gain a more penetrating insight into understanding the processes of 
environmental interpretation, capture the knowledge and, as far as possible, 
reformulate it in explicit, or quantitative terms. 
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